

DiffuPath

DiffuPath is an analytic tool for biological networks that connects the generic label propagation algorithms from
DiffuPy [https://github.com/multipaths/DiffuPy/] to biological networks encoded in several formats such as
Simple Interaction Format (SIF) or Biological Expression Language (BEL). For example, in the application scenario
presented in the paper, we use three pathway databases (i.e., KEGG, Reactome and WikiPathways) and their integrated
network retrieved from PathMe [https://github.com/PathwayMerger/PathMe/] 1 to analyze three multi-omics datasets.
However, other biological networks can be imported from the Bio2BEL ecosystem 2.

Installation is as easy as getting the code from PyPI [https://pypi.python.org/pypi/diffupath] with
python3 -m pip install diffupath. See the installation documentation.

See also

	Documented on Read the Docs [http://diffupath.readthedocs.io/]

	Versioned on GitHub [https://github.com/multipaths/diffupath]

	Tested on Travis CI [https://travis-ci.org/multipaths/diffupath]

	Distributed by PyPI [https://pypi.python.org/pypi/diffupath]

Contents:

	Installation
	Requirements

	Command Line Interface

	Constants

	Databases
	Network Dumps

	Custom-network formats

	Custom-network example

	Visualization
	Input mapping

	Validations

	PathMe Harmonization

Disclaimer

DiffuPath is a scientific software that has been developed in an academic capacity, and thus comes with no warranty or
guarantee of maintenance, support, or back-up of data.

References

	1

	Domingo-Fernandez, D., Mubeen, S., Marin-Llao, J., Hoyt, C., et al. Hofmann-Apitius, M. (2019). PathMe:
Merging and exploring mechanistic pathway knowledge. [https://www.biorxiv.org/content/10.1101/451625v1].
BMC Bioinformatics, 20:243.

	2

	Hoyt, C. T., et al. (2019). Integration of Structured Biological Data Sources using Biological Expression
Language [https://doi.org/10.1101/631812]. bioRxiv, 631812.

Installation

The latest stable code can be installed from PyPI [https://pypi.python.org/pypi/diffupath] with:

$ python3 -m pip install diffupath

The most recent code can be installed from the source on GitHub [https://github.com/multipaths/diffupath] with:

$ python3 -m pip install git+https://github.com/multipaths/diffupath.git

Required to install the latest PathMe version directly from GitHub:

$ python3 -m pip install git+https://github.com/PathwayMerger/PathMe.git

For developers, the repository can be cloned from GitHub [https://github.com/multipaths/diffupath] and installed in
editable mode with:

$ git clone https://github.com/multipaths/diffupath.git
$ cd diffupath
$ python3 -m pip install -e .

Requirements

diffupath requires the following libraries:

networkx (>=2.1)
pybel (0.13.2)
biokeen (0.0.14)
click (7.0)
tqdm (4.31.1)
numpy (1.16.3)
scipy (1.2.1)
scikit-learn (0.21.3)
pandas (0.24.2)
openpyxl (3.0.2)
plotly (4.5.3)
matplotlib (3.1.2)
matplotlib_venn (0.11.5)
bio2bel (0.2.1)
pathme
diffupy

Command Line Interface

The following commands can be used directly use from your terminal:

	Download a database for network analysis.

The following command generates a BEL file representing the network of the given database.

$ python3 -m diffupath database network --database=<database-name>

To check the available databases, run the following command:

$ python3 -m diffupath database ls

	Run a diffusion analysis

The following command will run a diffusion method on a given network with the given data

$ python3 -m diffupath diffusion run --network=<path-to-network-file> --input=<path-to-data-file> --method=<method>

Constants

Constants of DiffuPath.

	
diffupath.constants.DEFAULT_DIFFUPATH_DIR = '/home/docs/.diffupath'

	Default DiffuPath directory

	
diffupath.constants.OUTPUT_DIFFUPATH_DIR = '/home/docs/.diffupath/output'

	Default DiffuPath output directory

	
diffupath.constants.ensure_output_dirs()

	Ensure that the output directories exists.

	
diffupath.constants.BY_METHOD = 'method'

	raw

	
diffupath.constants.KEGG_NAME = 'kegg'

	KEGG

	
diffupath.constants.REACTOME_NAME = 'reactome'

	Reactome

	
diffupath.constants.WIKIPATHWAYS_NAME = 'wikipathways'

	WikiPathways

	
diffupath.constants.MIRTARBASE_NAME = 'mirtarbase'

	MirTarBase

	
diffupath.constants.SIDER_NAME = 'sider'

	SIDER

	
diffupath.constants.PHEWAS_NAME = 'phewascatalog'

	PhewasCatalog

	
diffupath.constants.HSDN_NAME = 'hsdn'

	HSDN

	
diffupath.constants.DDR_NAME = 'ddr'

	DDR

	
diffupath.constants.DRUGBANK_NAME = 'drugbank'

	DrugBank

	
diffupath.constants.GENE_ONTOLOGY_NAME = 'go'

	Gene Ontology

	
diffupath.constants.DATABASES = ['kegg', 'reactome', 'wikipathways', 'mirtarbase', 'sider', 'phewascatalog', 'hsdn', 'ddr', 'drugbank', 'go']

	Databases available for download in DiffuPath

Databases

In this section, we describe the types of networks (databases) you can select to run diffusion methods over. These
include the following and are described in detail in this section *:

	Select a network representing an individual biological database

	Select multiple databases to generate a harmonized network

	Select from one of four predefined collections of biological databases representing a harmonized network

	Submit your own network † from one of the accepted formats

	*

	Please note that all networks available through DiffuPath have been generated using PyBEL v.0.13.2.

	†

	If there are duplicated nodes in your network, please take a look at this Jupyter Notebook [https://nbviewer.jupyter.org/github/multipaths/Results/blob/master/notebooks/filter_networks/solve_duplicate_labels_issue.ipynb] to address the issue.

Network Dumps

Because of the high computational cost of generating the kernel, we provide links to pre-calculated kernels for a set of
networks representing biological databases.

	Database

	Description

	Reference

	Download

	DDR

	Disease-disease associations

	1

	ddr.json [https://drive.google.com/open?id=1inyRVDGNM4XLD0ZxoAT0ekX4WfcBF29H]

	DrugBank

	Drug and drug target interactions

	2

	drugbank.json [https://drive.google.com/open?id=13E1mr0c-aKFaAqAW_8aQglSium0Ji0fp]

	Gene Ontology

	Hierarchy of tens of thousands of biological processes

	3

	go.json [https://drive.google.com/open?id=1BzKSShbPMqZQpElVDd-WJGnei_fy94Qg]

	HSDN

	Associations between diseases and symptoms

	4

	hsdn.json [https://drive.google.com/open?id=1KSP6lu76jk2B45ShGJEKId8ZkAQCtjHP]

	KEGG

	Multi-omics interactions in biological pathways

	5

	kegg.json [https://drive.google.com/open?id=1jiAWFeSxbu4PVApil4jBn7-IzSP5UeCr]

	miRTarBase

	Interactions between miRNA and their targets

	6

	mirtarbase.json [https://drive.google.com/open?id=1LNtung6mWp1azqBSx8KKKCzki7M4l--8]

	Reactome

	Multi-omics interactions in biological pathways

	7

	reactome.json [https://drive.google.com/open?id=19u1rlhGkN2UACNcMMf6sXyVOzjcVww2t]

	SIDER

	Associations between drugs and side effects

	8

	sider.json [https://drive.google.com/open?id=1izVj2MneOh5y8DHTEaUPGUNgyFdS7MQM]

	WikiPathways

	Multi-omics interactions in biological pathways

	9

	wikipathways.json [https://drive.google.com/open?id=1WUOWsA3dCgDgSsA-N3gXNF7Lb9U1LWdD]

If you would like to use one of our predefined collections, you can similarly download pre-calculated kernels for sets
of networks representing integrated biological databases.

	Collection

	Database

	Description

	Download

	#1

	KEGG, Reactome and WikiPathways

	-omics and biological
processes/pathways

	pathme.json [https://drive.google.com/open?id=1GnS0BJ7FozPdmPFBJbhBiW-UmfyIgrTW]

	#2

	KEGG, Reactome, WikiPathways
and DrugBank

	-omics and biological
processes/pathways with a strong
focus on drug/chemical interactions

	pathme_drugbank.json [https://drive.google.com/open?id=1jxTBRF3pzhssYpL_3D3Gw46szPnjdSiU]

	#3

	KEGG, Reactome, WikiPathways
and MirTarBase

	-omics and biological processes/
pathways enriched with miRNAs

	pathme_mirtarbase.json [https://drive.google.com/open?id=1qt_a0R_DpCEBGVXZMywKpr7sKEOShXB3]

Custom-network formats

You can also submit your own networks in any of the following formats:

	BEL [https://language.bel.bio/] (.bel)

	CSV (.csv)

	Edge [https://networkx.github.io/documentation/stable/reference/readwrite/edgelist.html] list [https://networkx.github.io/documentation/stable/reference/readwrite/edgelist.html] (.lst)

	GML [http://docs.yworks.com/yfiles/doc/developers-guide/gml.html] (.gml or .xml)

	GraphML [http://graphml.graphdrawing.org] (.graphml or .xml)

	Pickle (.pickle)

	TSV (.tsv)

Minimally, please ensure each of the following columns are included in the network file you submit:

	Source

	Target

Optionally, you can choose to add a third column, “Relation” in your network (as in the example below). If the relation
between the Source and Target nodes is omitted, and/or if the directionality is ambiguous, either node can be
assigned as the Source or Target.

Custom-network example

	Source

	Target

	Relation

	A

	B

	Increase

	B

	C

	Association

	A

	D

	Association

You can also take a look at our sample networks [https://github.com/multipaths/DiffuPy/tree/master/examples/networks]
folder for some examples networks.

References

	1

	Menche, J., et al. (2015). Disease networks. Uncovering disease-disease relationships through the incomplete
interactome [https:doi.org/10.1126/science.1257601]. Science, 347(6224), 1257601.

	2

	Wishart, D. S., et al. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018 [https://doi.org/10.1093/nar/gkx1037]. Nucleic Acids Research, 46(D1), D1074–D1082.

	3

	Ashburner, M., et al. (2000). Gene ontology: tool for the unification of biology [https://doi.org/10.1038/75556]. The Gene Ontology Consortium. Nature Genetics, 25(1), 25–9.

	4

	Zhou, X., Menche, J., Barabási, A. L., & Sharma, A. (2014). Human symptoms–disease network [https://doi.org/10.1038/ncomms5212]. Nature communications, 5(1), 1-10.

	5

	Kanehisa, et al. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. [https://doi.org/10.1093/nar/gkw1092]. Nucleic Acids Res. 45,D353-D361.

	6

	Huang, H. Y., et al. (2020). miRTarBase 2020: updates to the experimentally validated microRNA–target
interaction database [https://doi.org/10.1093/nar/gkz896]. Nucleic acids research, 48(D1), D148-D154.

	7

	Fabregat, A et al. (2016). The Reactome Pathway Knowledgebase [https://doi.org/10.1093/nar/gkv1351]. Nucleic
Acids Research 44. Database issue: D481–D487.

	8

	Kuhn, M., et al. (2016). The SIDER database of drugs and side effects [https://doi.org/10.1093/nar/gkv1075].
Nucleic Acids Research, 44(D1), D1075–D1079.

	9

	Slenter, D.N., et al. (2017). WikiPathways: a multifaceted pathway database bridging metabolomics to other
omics research [https://doi.org/10.1093/nar/gkx1064]. Nucleic Acids Research, 46(D1):D661-D667.

Visualization

Input mapping

Even though it is not relevant for the input user usage, taking into account the input mapped entities over the
background network is relevant for the diffusion process assessment, since the coverage of the input implies the actual
entities-scores that are being diffused. In other words, only the entities whose labels match an entity in the network
will be further processed for diffusion.

[image: Alternative text]
To visualize the mapping statistics heatmap, use the following function:

Further data views can be rendered for the input data mapping, such as VennDiagram to explore the overlap or
distribution bloxplot:

[image: Alternative text]
[image: Alternative text]

Validations

To visualize the metrics derived from validation experiments, you can plot metric Boxplots for repeated holdouts or
iterated cross validation and its statistical tests and Barcharts with its threshold line:

Two dimensional BLOXPLOT:

[image: Alternative text]
Three dimensional BLOXPLOT:

[image: Alternative text]
Statistical test BARCHART:

[image: Alternative text]

PathMe Harmonization

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 diffupath	

 	
 	
 diffupath.constants	

 	
 	
 diffupath.repeated_holdout	

Index

 B
 | D
 | E
 | G
 | H
 | K
 | M
 | O
 | P
 | R
 | S
 | V
 | W

B

 	
 	BY_METHOD (in module diffupath.constants)

D

 	
 	DATABASES (in module diffupath.constants)

 	DDR_NAME (in module diffupath.constants)

 	DEFAULT_DIFFUPATH_DIR (in module diffupath.constants)

 	
 diffupath.constants

 	module

 	
 	
 diffupath.repeated_holdout

 	module

 	DRUGBANK_NAME (in module diffupath.constants)

E

 	
 	ensure_output_dirs() (in module diffupath.constants)

G

 	
 	GENE_ONTOLOGY_NAME (in module diffupath.constants)

H

 	
 	HSDN_NAME (in module diffupath.constants)

K

 	
 	KEGG_NAME (in module diffupath.constants)

M

 	
 	MIRTARBASE_NAME (in module diffupath.constants)

 	
 module

 	diffupath.constants

 	diffupath.repeated_holdout

O

 	
 	OUTPUT_DIFFUPATH_DIR (in module diffupath.constants)

P

 	
 	PHEWAS_NAME (in module diffupath.constants)

R

 	
 	REACTOME_NAME (in module diffupath.constants)

S

 	
 	SIDER_NAME (in module diffupath.constants)

V

 	
 	validation_by_method() (in module diffupath.repeated_holdout)

 	
 	validation_by_subgraph() (in module diffupath.repeated_holdout)

W

 	
 	WIKIPATHWAYS_NAME (in module diffupath.constants)

Cross Validation

Cross-validation utilities.

	
diffupath.repeated_holdout.validation_by_method(mapping_input: Union[List, Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List]], graph: networkx.classes.graph.Graph, kernel: diffupy.matrix.Matrix, k: Optional[int [https://docs.python.org/3/library/functions.html#int]] = 100) → Tuple[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]]

	Repeated holdout validation by diffustion method.

	Parameters

	
	mapping_input – List or value dictionary of labels {‘label’:value}.

	graph – Network as a graph object.

	kernel – Network as a kernel.

	k – Iterations for the repeated_holdout validation.

	
diffupath.repeated_holdout.validation_by_subgraph(mapping_input, kernels: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[diffupy.matrix.Matrix]], universe_kernel: Optional[diffupy.matrix.Matrix] = None, z_normalization: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = True, k: Optional[int [https://docs.python.org/3/library/functions.html#int]] = 100) → Tuple[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List]], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List]]]

	Repeated holdout validation by subgraph.

	Parameters

	
	mapping_input – List or value dictionary of labels {‘label’:value}.

	kernels – Network stratified as a dictionary {‘kernel-tile’:kernel}.

	universe_kernel – Network as an integrated kernel.

	z_normalization – Flag for the statistical normalization option.

	k – Iterations for the repeated_holdout validation.

BASIC USAGE

	The main required input to run diffusion using DiffuPath is:
	
	A network/graph. (see Network-Input Formatting below)

	A dataset of scores. (see Scores-Input Formatting below)

[image: Alternative text]
For its usability, you can either:

	Use the Command Line Interface (see cli) [https://github.com/multipaths/DiffuPath/blob/master/docs/source/cli.rst].

	Use pythonicaly the functions provided in diffupath.diffuse:

from diffupath.diffuse import run_diffusion

DATA INPUT and GRAPH as PATHs -> returned as *Pandas DataFrame*
diffusion_scores = run_diffusion('~/data/input_scores.csv', '~/data/network.csv').as_pd_dataframe()

DATA INPUT and GRAPH as Python OBJECTS -> exported *as_csv*
diffusion_scores = run_diffusion(input_scores, network).as_csv('~/output/diffusion_results.csv')

Customization

Network

You can customize the PathMe background network:

	Constructing it by selecting among the available Biological Network Databases (see database) [https://github.com/multipaths/DiffuPath/blob/master/docs/source/database.rst].

	Filtering the default network either by database or by omic.

diffusion_scores = run_diffusion(input_scores, database = 'pathme_drugbank', filter_network_omic = ['gene', 'mirna'])

If you wish to use your own network, we recommend you to check the supported formats in DiffuPy [https://github.com/multipaths/DiffuPy/blob/master/docs/source/usage.rst]
and directly use DiffuPy, since DiffuPath wraps it to offer diffusion with the PathMe environment networks.

Methods

The diffusion method by default is z, which statistical normalization has previously shown outperformance over raw
diffusion [1]. Further parameters to adapt the propagation procedure are also provided, such as choosing among the
available diffusion methods or providing a custom method function. See the diffusion Methods and/or Method modularity [https://github.com/multipaths/DiffuPy/blob/master/docs/source/diffusion.rst].

diffusion_scores_select_method = run(input_scores, method = 'raw')

from networkx import page_rank # Custom method function

diffusion_scores_custom_method = run(input_scores, method = page_rank)

You can also provide your own kernel method or select among the ones provided in kernels.py function which you can
provide as a kernel_method argument. By default regularised_laplacian_kernel is used.

from diffupath.kernels import p_step_kernel # Custom kernel calculation function

diffusion_scores_custom_kernel_method = run(input_scores, method = 'raw', kernel_method = p_step_kernel)

So method stands for the diffusion process method, and kernel_method for the kernel calculation method.

FORMATTING

Before running diffusion using DiffuPath, take into account the input data/scores formats.
You can find specified here samples of supported input scores.

If you wish to use your own network, we recommend you to check the supported formats in DiffuPy [https://github.com/multipaths/DiffuPy/blob/master/docs/source/usage.rst]
and directly use DiffuPy, since DiffuPath wraps it to offer diffusion with the PathMe environment networks.

Input format

The input is preprocessed and further mapped before the diffusion. See input mapping or or see process_input docs [https://github.com/multipaths/DiffuPy/blob/master/docs/source/preprocessing.rst] in DiffuPy for further details.
Here are exposed the covered input formats for its preprocessing.

Scores

You can submit your dataset in any of the following formats:

	CSV (.csv)

	TSV (.tsv)

	pandas.DataFrame

	List

	Dictionary

(check Input dataset examples)

So you can either provide a path to a .csv or .tsv file:

from diffupath.diffuse import run_diffusion

diffusion_scores_from_file = run('~/data/diffusion_scores.csv')

or Pythonically as a data structure as the input_scores parameter:

data = {'Node': ['A', 'B',...],
 'Node Type': ['Metabolite', 'Gene',...],

 }
df = pd.DataFrame (data, columns = ['Node','Node Type',...])

diffusion_scores_from_dict = run(df)

Please ensure that the dataset minimally has a column ‘Node’ containing node IDs. You can also optionally add the
following columns to your dataset:

	NodeType

	LogFC *

	p-value

	*

	Log2 fold change

Input dataset examples

DiffuPath accepts several input formats which can be codified in different ways. See the
diffusion scores [https://github.com/multipaths/DiffuPy/blob/master/docs/source/diffusion.rst] summary for more
details on how the labels input are treated according to each available method.

1. You can provide a dataset with a column ‘Node’ containing node IDs.

	Node

	A

	B

	C

	D

from diffupath.diffuse import run_diffusion

diffusion_scores = run(dataframe_nodes)

Also as a list of nodes:

['A', 'B', 'C', 'D']

diffusion_scores = run(['A', 'B', 'C', 'D'])

2. You can also provide a dataset with a column ‘Node’ containing node IDs as well as a column ‘NodeType’,
indicating the entity type of the node to run diffusion by entity type.

	Node

	NodeType

	A

	Gene

	B

	Gene

	C

	Metabolite

	D

	Gene

Also as a dictionary of type:list of nodes :

{'Gene': ['A', 'B', 'D'], 'Metabolite': ['C']}

diffusion_scores = run({'Genes': ['A', 'B', 'D'], 'Metabolites': ['C']}, network)

3. You can also choose to provide a dataset with a column ‘Node’ containing node IDs as well as a column ‘logFC’
with their logFC. You may also add a ‘NodeType’ column to run diffusion by entity type.

	Node

	LogFC

	A

	4

	B

	-1

	C

	1.5

	D

	3

Also as a dictionary of node:score_value :

{'A':-1, 'B':-1, 'C':1.5, 'D':4}

diffusion_scores = run({'A':-1, 'B':-1, 'C':1.5, 'D':4})

Combining point 2., you can also indicating the node type:

	Node

	LogFC

	NodeType

	A

	4

	Gene

	B

	-1

	Gene

	C

	1.5

	Metabolite

	D

	3

	Gene

Also as a dictionary of type:node:score_value :

{Gene: {A:-1, B:-1, D:4}, Metabolite: {C:1.5}}

diffusion_scores = run({Gene: {A:-1, B:-1, D:4}, Metabolite: {C:1.5}}, network)

4. Finally, you can provide a dataset with a column ‘Node’ containing node IDs, a column ‘logFC’ with their logFC
and a column ‘p-value’ with adjusted p-values. You may also add a ‘NodeType’ column to run diffusion by entity type.

	Node

	LogFC

	p-value

	A

	4

	0.03

	B

	-1

	0.05

	C

	1.5

	0.001

	D

	3

	0.07

This only accepted pythonicaly in dataaframe format.

See the sample datasets [https://github.com/multipaths/DiffuPy/tree/master/examples/datasets] directory for example
files.

Input Mapping/Coverage

Even though it is not relevant for the input user usage, taking into account the input mapped entities over the
background network is relevant for the diffusion process assessment, since the coverage of the input implies the actual
entities-scores that are being diffused. In other words, only the entities whose labels match an entity in the network
will be further processed for diffusion.

Running diffusion will report the mapping as follows:

Mapping descriptive statistics

wikipathways:
gene_nodes (474 mapped entities, 15.38% input coverage)
mirna_nodes (2 mapped entities, 4.65% input coverage)
metabolite_nodes (12 mapped entities, 75.0% input coverage)
bp_nodes (1 mapped entities, 0.45% input coverage)
total (489 mapped entities, 14.54% input coverage)

kegg:
gene_nodes (1041 mapped entities, 33.80% input coverage)
mirna_nodes (3 mapped entities, 6.98% input coverage)
metabolite_nodes (6 mapped entities, 0.375% input coverage)
bp_nodes (12 mapped entities, 5.36% input coverage)
total (1062 mapped entities, 31.58% input coverage)

reactome:
gene_nodes (709 mapped entities, 23.02% input coverage)
mirna_nodes (1 mapped entities, 2.33% input coverage)
metabolite_nodes (6 mapped entities, 37.5% input coverage)
total (716 mapped entities, 22.8% input coverage)

total:
gene_nodes (1461 mapped entities, 43.44% input coverage)
mirna_nodes (4 mapped entities, 0.12% input coverage)
metabolite_nodes (13 mapped entities, 0.38% input coverage)
bp_nodes (13 mapped entities, 0.39% input coverage)
total (1491 mapped entities, 44.34% input coverage)

To graphically see the mapping coverage, you can also plot a heatmap view of the mapping (see views) [https://github.com/multipaths/DiffuPath/blob/master/docs/source/views.rst].
To see how the mapping is performed over a input pipeline preprocessing, take a look at this JupyterNotebook [https://nbviewer.jupyter.org/github/multipaths/Results/blob/master/notebooks/processing_datasets/dataset_1.ipynb]
or see process_input docs [https://github.com/multipaths/DiffuPy/blob/master/docs/source/preprocessing.rst] in
DiffuPy.

Output format

The returned format is a custom Matrix type, with node labels as rows and a column with the diffusion score, which can
be exported into the following formats:

diffusion_scores.to_dict()
diffusion_scores.as_pd_dataframe()
diffusion_scores.as_csv()
diffusion_scores.to_nx_graph()

References

	1

	Picart-Armada, S., et al. (2017). Null diffusion-based enrichment for metabolomics data [https://doi.org/10.1371/journal.pone.0189012]. PloS one 12.12.

 _images/2boxplot.png
AUROC

10

03

08

07

05

05

04

Dataset 1

Dataset 2

Dataset 3

04

04

Bm PathMeUniverse

[subgraph

g

e,
o,

Database

Wk
/’ap/,‘vay
s

_images/Distribution.png
Input measures distribution by database

FC distribution wikipathways FC distribution kegg FC distribution reactome
0200 o200 0200
o17s s o17s
o150 im0 o150
o125 128 o125
0100 0100 0100
0075 0075 0075
o050 o050 o050
o0zs o025 o0zs
o000 L o000 L o000 |

_images/1boxplot.png
AUROC

10

08

06

04

02

00

Dataset 1 T Dataset 2 T Dataset 3
08 % E I |
° 8 3
= == ° - 8
05 == 0sf o T
]]
= g + |8 =
+ % :
Los Lo L
02 02
00 00
‘ay, 2 ‘ap, Pa, ‘ay, 2 ‘ap, Pa, ‘ay, 2 ‘ap, Pa,
o sy o sy o sy
Method Method Method

_images/barchart.png
normalized FDR -log10(p-value)

100

2

Statistic Test AUROC Validation by Method

mmm Dataset 1
B Dataset 2
B Dataset 3

comparaison

_images/HeatMap.png
vikipathways -

kegg -

reactome -

otal -

478

709

1461

13

Dataset 1 DiffuPath Mapping

2

13

489

716

1491

07

06

05

(101 2Bewsniad

02

01

00

_images/VennDiagram.png
KEGG

Reactome

505

WikiPathways

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 DiffuPath

 		
 Installation

 		
 Requirements

 		
 Command Line Interface

 		
 Constants

 		
 Databases

 		
 Network Dumps

 		
 Custom-network formats

 		
 Custom-network example

 		
 References

 		
 Visualization

 		
 Input mapping

 		
 Validations

 		
 PathMe Harmonization

_static/plus.png

